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Matching of Physical Experiments and Multibody Dynamic 
Simulation for Large Deformation Problems 
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CAELab, NRL, Pusan National University Kumjung-Ku,  Busan 609-735, South Korea 

Oleg Dmitroehenko, Dmitri Pogorelov 
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Many papers have studied computer simulations of elastic bodies undergoing large deflections 

and large deformations. But there have not been many attempts to check the validity of the 

numerical formulations because the simulation results could not be matched without correct 

input data such as material properties and damping effects. In this paper, these values are 

obtained from real experiment with a high-speed camera and a data acquisition system. The 

simulation results with the absolute nodal coordinate formulation (ANCF) are compared with 

the results of real experiments. Two examples, a thin cantilever beam and a thin plate, are 

studied to verify whether the simulation results are well matched to experimental results. 

Key Words :La rge  Displacements, Experiments, Simulation, Absolute Nodal Coordinate 

Formulation 

1. Introduct ion  

The absolute nodal coordinate formulation 

(ANCF) was known a nice technique for mo- 

deling and simulation of large deformation 

and large displacement problems (Omar and 

Shabana, 2001). In this formulation, displace- 

ments of each finite element are represented rela- 

tive to the global frame of reference. And the 

equations of motion with this formulation gen- 

erate a constant mass matrix and a constant vec- 

tor of generalized gravity forces as well as zero 

centrifugal and Coriolis forces (Mikkola and 

Shabana, 2001). Thus. the only nonlinear term in 

the equations of motion is the vector of elastic 

forces. 

Although this formulation is widely used for 

simulations of large deformation problems with 
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nice animations, no paper was written concerning 

the validity of these simulations by comparing 

with real experiments. Without correct input data, 

such as air damping in the motion, the simulation 

could not be well matched to the experimental 

results. Thus, in this paper, Young's modulus E 

and the damping ratio of the material used in the 

simulation are obtained from the real experi- 

ments. Thus, the precise validation of the A N C F  

could be checked. For the author's knowledge, 

this is the first paper to compare the A N C F  

formulation to real experiments. Two experi- 

ments, a 2D beam deflection and a thin plate 

oscillation, are carried out and compared to show 

the validity of the simulations. 

For the modeling of a 2D beam, many models 

of elastic forces have been proposed which use a 

matrix representation of the beam shape func- 

tions and nodal coordinates (Craig, 1981). In this 

paper, a new geometrical treatment of the abso- 

lute nodal coordinates is suggested. Nodal dis- 

placements and nodal slopes are employed for the 

finite element formulation. The position of an 

arbitrary point in the beam centerline is then 

expressed as a linear combination of the nodal 
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vectors with the shape functions used as coeffi- 

cients. This approach is identical to the matrix 

representation proposed in paper (Bathe, 1996), 

but it avoids the problem of  using zero values 

for the shape function matrix. Strain energy, elas- 

tic forces and their Jacobian matrices are calcu- 

lated explicitly using tensor- l ike  relations. (Lee, 

2003) For  a model ing  of  a thin plate, a 48 d.o.f. 

plate element is developed with a two-d imen-  

sional beam X beam plate element. The element is 

the direct general izat ions of  16 d.o.f, element 

usually used in the finite element method. The 

Kirchhoff  plate theory with nonl inear  s t rain-dis-  

placement  relat ionships was used to calculate 

elastic forces as well as differential geometry of  

surfaces in 3D space to calculate mid -p lane  defor- 

mations and transverse curvatures and twist. 

For  the model ing  of  material  damping and air 

resistant damping,  the Rayleigh 's  propor t ional  

damping  was employed to account for resistance 

forces. To  choose the constants in the propor-  

t ional damping,  we carried out oscillations of  

a canti lever beam and a thin plate with an end-  

point  weight attached. Fur thermore ,  we obtained 

experimental  data on the large deflections of  a 

2D beam and a thin plate to verify the results 

generated by A N C F .  

To  the best of  the authors '  knowledge,  this 

paper is the first to compare  data from simula- 

tions and real experiments on large deformations 

of  beams. 

The paper is organized as follows. A des- 

cr ipt ion of  our  experimental  setup for a beam is 

explained in chapter  2, and the formulat ion and 

s imulat ion of  2D beam in chapter 3. In chapter  4, 

results from the experiments and computer  si- 

mulat ions of  a beam are compared.  An experi- 

mental setup for a plate is explained in chapter 5, 

and the formulat ion and s imulat ion of  a plate is 

in chapter 6. Results from the experiments and 

computer  s imulat ions o f  a plate are compared in 

chapter  7, and the conclusions are listed. 

focus on the mot ion of  a canti lever beam with a 

weight attached to the free end as presented in 

Fig. 1. 

2.1 Experimental setup with a high speed 

camera 

An accelerometer is usually used to measure 

accelerations and displacements.  However ,  the 

beam used in this research is too thin to install 

an accelerometer.  Therefore,  a h igh-speed camera 

( R E D L A K E  Motion Scope type),  which runs 

up 1000 frames per second, is used to measure 

motion.  

The beam used in this test has diameter of  

1 mm, length of  400 mm, and are made of  indus- 

trial spring steel. To  make it a cantilever,  the 

/ 
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Fig. 1 Cantilever beam with attached mass 
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2. Experiments  of Large 
Def lect ion of 2D Beam 

The large deflection experiments of  a beam 
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Fig. 2 Experimental setup 
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beam is clamped tightly by a heavy jig, and is 

held in place by two thick steel blocks. The 

mass of the clamp is 1.74 kg, which is 1700 times 

heavier then the mass of the beam. Moreover, the 

clamp is secured with 4 bolts, which ensures a 

cantilever beam. 

To track the end point  deflection, a t racking 

mark was bonded at the tip. The experimental  

setup was installed as shown in Fig. 2, and deflec- 

tions were captured by a high-speed camera. 

2.2 F r e e  v i b r a t i o n  to c a l c u l a t e  Y o u n g ' s  

m o d u l u s  and d a m p i n g  r a t i o  

The stiffness of the beam (i.e., Young 's  mo- 

dulus E),  which is its most important  material  

property, is calculated by an indirect method 

rather than a tensile test. Because the beam is too 

thin to fix at the tester, it is difficult to conduct  

such a test properly. Therefore the beam's stiff- 

ness is calculated using its measured first mode 

and its density. The first step is to measure the 

deflection of beam;  the second is to calculate 

the first frequency of the cantilever beam. The 

third one calculates the stiffness using relation- 

ship between the frequency and the material 's  

properties. The first frequency for the beam was 

obtained from the F F T  of the free vibrat ion,  

which is shown in Fig. 3. From the Fig. 3, the 

first frequency of the beam is obtained as 4.315 

Hz. 

The stiffness of the beam can be calculated 

from the frequency of the first mode as seen in 

(Meirovitch, 1982) 

co= (/~l)2v/ E1 pAl4 (1) 

where /3l represents the boundary  condi t ions  of  

the beam. The stiffness can then be calculated 

according to the formula found :  

(-o 2 1 
E - - ( i l l ) 4  p A I 4 ~  (2) 

The calculated value E of the 1 mm diameter 

beam was 200GPa .  Next, the damping ratio 

must be calculated for the simulation.  To model 

the damping,  a part icular form of  propor t ional  

Rayleigh damping  (Bathe, 1996) is employed and 

the system damping  matrix assumes the following 

form : 

D = a M + / ~ C  (3) 

which includes the mass matrix M and the 

stiffness matrix C multiplied by the coefficients 

defined below : 

a - ~d-  c d  
(4) 

/3 2 (~2oa2-- ~]wa) 
= 

which themselves depend on the frequencies 

co~ and co2, as well as on the damping  ratio ~'~ 

and ~'a for the first two modes of the system that 

appear from the dynamic modal  equa t ions :  

2 ,. + 2 ~i(,oi2 ,. + w~x i=O. 

The ratios ~'~ and ~2 should be calculated from 

the experimental  data. The damping  ratio of 

the first mode is calculated in accordance with 

the formula from reference (Meirovitch, 1982; 

Takahashi  et al., 2002). 

~1 \-1/2 
~'1= 2 ~  ( 1 -t- 22. ) 

2 5  

2O 

lo i! 

s ii 

o 

1 

Fig. 3 
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i i , s 6 , 

Frequency (Hz) 

The first frequency of 1 mm beam 

where ~1 is the logarithmic decrement. In case 

of" low-level  damping (such as this one),  when 

c~l<<2zc, we can use the simplified expression 

The logarithmic decrement ~1 can be estimated 

fi'om the experimental  sequence of magnitudes 

using the simple relat ionship below. 
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1 / An 81 = ln  A1, A1 ~ ( A~ / (5) 

where A1 and  A n  are peaks  o f  the first and  nth  

osc i l la t ions  from the  release test. 

Since o9~ could  not  be cap tu red  by a release 

test, an impac t  test was used to find cos by im- 

pact ing  the  end point .  T h e  va lue  ~'2 was ca lcula ted  

the same m e t h o d  used for the first mode.  

2.3 Large deformation of 2D beam 

A measured  mass was a t tached to the end of  a 

beam to induce  large de fo rma t ion  and  a c i rcu la r  

target  po in t  was glued on  to t rack the  beam ' s  

d isplacement .  The  mass  at the end  o f  the beam 

is suppor t ed  unt i l  the test beg i n s :  it is released 

when  the camera  starts roll ing.  

The  shape  and  loca t ion  of  the a t tached mass  

are shown  in Fig. 4, and  the pa ramete r s  of  the 

var ious  objects  used in this  test are p rov ided  in 

T a b l e  1. 

Since the paper  target 's  mass is very small ,  its 

effect on  the results of  the large de fo rma t ion  

test is negligible.  However ,  for the def lect ion 

wi thou t  a t tached mass,  the target ' s  mass  shou ld  

be considered.  A p h o t o g r a p h  o f  a large defor-  

Table 1 End-body  parameters 

mo Shift of mass Ic 
Body Descrip mass inertia 

mass center, mm 
No. Tion moment 

g Ocx Pcy kg.m 2 

1 paper tar 0.023 0 0 
get 

Attached 
2 20.0 0 -- 13 

I " r l R s s  

10-10~.0 

1.58" 10 -4 

Fig. 4 Attached mass 

m a t i o n  of  the beam is s h o w n  in Fig. 5. No t  

surpr i s ingly  it shows  much  de fo rmat ion  due to 

effect of  the a t tached mass. The  results  of  the 

e n d p o i n t  def lect ions  are measured  336 mm,  and  

the na tu ra l  f requency of  the beam was found 

1.204 Hz by using the F F T  process. 

The  m a x i m u m  d i sp lacement  in the vert ical  di- 

rect ion is abou t  8 6 2  of  the beam' s  length.  The  

shapes  and  ch rono log ie s  of  these de fo rma t ions  are 

presented in Fig. 6. 

After  conduc t ing  the  test of  large de format ion ,  

the beams  were retested to measure  the i r  plast ic  

de format ion .  As the beams  re turned  back to the i r  

or ig ina l  pos i t ions  when  the a t tached masses are 

removed,  there was no plast ic  de format ion .  

Fig. 5 A beam after a test of large deformation 
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C 

-250 • " • 

Fig. 6 
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x position (rr ) 
Shapes and chronologies o f  the large defor- 

mations (1 mm diameter, 20 g attached mass) 
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3. Finite Element Model and 
Simulation of Large Deflection of 

2D Beam 

A brief explanat ion about  the 2D beam si- 

mula t ion with absolute nodal  coordinate for- 

mula t ion is explained here. More detailed deri- 

vation and s imulat ion are explained in the refer- 

ence (Yoo et al., 2003). 

Consider  a finite element of the 2D Euler-  

Bernoulli  beam shown in Fig. 7. The line runn ing  

through its center is parameterized by the value 

p = 0 ,  " ' ,  l, where l is the beam's initial length. 

The vector of the absolute nodal  coordinates 

contains  position vectors r0, r t  (of the end points) 

and the tangent slope vectors r0, r~ at these points. 

We use the following index notat ion for the 

vector of the absolute nodal  coordinates of the 

beam : 

ro el 

2"o e2 
ei~_ 

r~ e3 

l't e4 

It can be shown that the posit ion of an arbitrary 

point  on the element is given by the following 

formula (Yoo et al., 2003): 

with global shape functions defined as fol lows:  

s, = 1 - - 3 ~ 2 + 2 ~  a, s2---- l (~--2~ez+~3),  
sa----3~2--2~ a, s4 = 1 ( $ a _  ~2 ) ,  ~=p/ I .  

For the sake of simplicity, however, we will use 

slightly different notat ion to express the same 

thing : 

r (p)  = [ s J  s2I saI s4I] 

ez e,] , 
= ~ she,~ 

ea k=i 

e4 

(6) 

Thus according the use of  many zero values in 

our  matrix computations.  I represents the 2 × 2  

identity matrix. More detailed explanat ions can 

be tbund in reference (Dmitrochenko,  2002). 

The equat ions of mot ion  of  the beam element 

can be obtained from the following Lagrange 

equat ions 

d aT r { O T , ~ r + ( o u , ~ r = ( o w , i r  

where kinetic energy T is defined by the equa- 

tion T = Itrrpdp, U represents strain ener- 

gy. And the virtual work of external gravity forces 

is given by a W =  8rrllgdp, where /1 is the 

linear density in kg/m. These equat ions assume 

the matrix form:  

/ {t r°xtl 0 s,10s2i0 s3i0 s, £xt[ 
rlyJ 

% Y r(p) p = l 

O x 

Fig. 7 2D beam finite element 

M i ! + Q ~ = Q  g (7) 

where 

1561 sym.  
M =  /zl 22 / I  4/2I 156I 

~ [  54I 13/I - 2 2 / I  
[ - - 1 3 / I  -312I 4 / 2 I J  

Qe= 
Qf 
Q~ Q~= , 
Q~ 

,ugl/2 
Izg 12/12 

izgl/2 
--/_tgla/12 

For the model ing of an attached mass, an ele- 

ment using nodal  slopes as generalized coor- 

dinates was used. More detail derivation can be 

found in the reference (Yoo et al., 2003). 
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The equat ions of  mot ion formulated in this 

investigation were put in the Universal  Mec- 

hanism (UM) program in reference (Pogorelov,  

1997) to obtain the solution. 

4. Comparison of Simulation and 

Experiment with 2D Beam 

Let us perform these calculat ions for the fol- 

lowing case:  the beam with diameter  d = 1  mm 

and end-po in t  mass m 0 = 2 0  g o f  the target. With 

the fol lowing values from experiments,  o~=6 .7  

rad/s ,  coa=33rad / s ,  ~ , = 0 . 9 8 7 ,  and ~ ' t=~)=0 .  

002, constants a and £4 are calculated as o~=0.02 

s - ~ , / ~ =  1 • lO-Ss, respectively. One can see that the 

value o f / 9  is much smaller  than that of  a. It is 

thus natural  to try to ignore the st iffness-propor-  

t ional  part o f  the damping  forces (Bathe, 1996) 

and use the simpler damping matrix : 

D=aM (8) 

Numerica l  integration shows that the results 

obtained by both models and equat ion (8) differ 

only in 4th-5 TM significant digits. However ,  the 

integration step in the case of  the full damping  

matrix produces a value that is 20 times smaller  

because the equat ions of  mot ion are much stiffer 

in that case. This  is why the simplified model  of  

damping  forces (8) is used in the numerical  

examples below. As can be seen in Fig. 8, the 

s imulat ion result shows a nice agreement. 

Fig. 8 

0 2 time. :] 6 8 

0 , ", ,n ,~ . . 
" J:  .': ./i i l  j l  t l  t '  ~'. 

- I 0 0  : :. .~ : ~ ' .  , • : f ~ ~ :  J 
' I ' • • ' • I • , ;  ; • : : • 

- 1 5 0  : . : : ; : i . ,. . ,, ,, . ,; ! 

-2(}(l : : ; • : : : j • ; : : : ~. i : 

-.,so " ; ; ; " f ~ i ~ , i f " 1 i . ~ . i ~ . : . I . 
I 3 0 () ~ d  l d  b I LJ  ~ l j  ~ l J  IL) t  IL, i l  L 
-350 

Comparison of experiments and simulation 

5. Experiments of  a Thin Plate  
Oscil lation 

This section focuses on the large mot ion of  a 

thin plate with a weight attached to the free end. 

5.1 Experimental results of a plate 

The experimental  setup for the plate oscil lat ion 

is shown in Fig. 9. The  camera traces the target 

fixed at the tip. Since the mot ion occurs in a three 

dimensional  space, the distance from the camera 

to the target is changing when the deflection 

occurs. Thus, the camera is installed as far as 

possible to reduce this kind of  visual distance 

error. Since the camera is installed 10 m from the 

target in the experiments,  the maximum error is 

less then 2.5% when the deflection is about  25 

mm. 

The tip posit ion of  a 4 0 0 m m × 2 0 4 m m × 0 . 4  

mm plate with 400 g of  attached mass is shown 

in Fig. 10, and the x, y, and z posit ions in time 

domain  are shown in Fig. 11. 

) u % ~  Side View 

Sensor 

Add mass 
Front View 

Fig. 9 Experimental setup for a thin plate 

[4- H -~ ~..,--!.r~~ : 

4 o o  "- ,~.-~r~: :  .>. 
v ~50200_~ ~ -250 ^. :,<. >"-4: 

-50 

Z kxls 

i',, o 

 Sat. 

... ~ . . .  vZ..%: 
,,--~... <? ~ .-~-~-,,C_-z u u 
~ ; " £ ~ - 1 o 0 -  x A,,i, 
~ - 5 0  

Fig. 10 Tip position in space 



748 Wan-Suk Yoo, Jeong-Han Lee, Jeong-Hyun Sohn, Su-Jin Park, Oleg Dmitrochenko and Dmitri Pogorelov 

5O 
0 

E - 5 0  
"~ - 1 0 0  
~-150 

-200 
--~-250 
• ~ -300 a 

- 3 5 0  

- - -  - x D - i r e c t i o n  ' 
. . . . . . .  y D i r e c t i o n  ! 

[ - Z D i r e c t i o n  ] 

"1. " " " " ' -  " . . . . . .  " ' ~J ~Ji~ir 

1 0 1 2 3 4 5 6 7 

T i m  e ( s e c )  

Fig. l l  Tip positions in time domain 

5.2 F r e q u e n c y  and damping  rat io  for the  

s i m u l a t i o n  

To verify the natural frequencies and damping 

ratio of the plate, the vertical displacement of 

the plate with attached mass is measured, which 

is shown in Fig. 12. The transformed signals by 

FFT are shown in Fig. 13. The first and the 

second modes are clearly shown, and the first 

modal frequency is about 1.2 Hz. From this value 

of frequency, the Young's modulus E of the plate 

is calculated and used for the input data in the 

computer simulation. 

Damping ratio of the plate is calculated by the 

following formula by using zl and the Zn+l values 

in Fig. 12 and the con value in Fig. 13. 

5 0  
0 

~" - 5 0  
- 1 0 0  
- 1 5 0  
- 2 0 0  
- 2 5 0  
- 3 0 0  N 
- 3 5 0  

r - -  4 0 0 , 2 0 4  P l a t e ~  

-5 0 5 10  15 2 0  2 5  

T i m  e(sec) 
Fig. 12 Ocillation of the plate 

3 0  3 5  

4O 

3 0  
2 s  v 
20 

E l o  ~, 
< 5 

0 - -  % 
0 .5 1 .0 

Fig. 13 

- - x  D i s p l a c e m e n t  
y D i s p l a c e m e n t  
z D i a p l a c e m  e n t  

.'s " 2_'o .... ' .............. 1 2 .5 3 .0 
F r e q u e n c y ( H  z )  

Natural frequency of the plate 

1 in z~ _ 1 z~ 
~'-- conmrd zn+1 con ( tn+l -  tl) In zn+l 

where zt and Zn+l are peaks of the first and nth 

oscillations in Fig. 12. 

6. F i n i t e  E l e m e n t  F o r m u l a t i o n  a n d  

S i m u l a t i o n  o f  a P l a t e  U s i n g  A N C F  

6.1 Fin i te  e l e m e n t  model  o f  a p la te  

In this chapter, EOM (equations of motion) of 

a thin plate are formulated with ANCF (absolute 

nodal coordinate formulation) and the simula- 

tions are carried out with the derived formula- 

tion. With a two-dimensional beam X beam plate 

element (Dmitrochenko, 2001), a 48 dof (degrees 

of freedom) plate element is developed. A beam x 

beam plate element is a four-node plate element, 

each node has 12 dofs (degrees of freedom). 

Twelve dofs consist one position vector and three 

rotation vectors in a 3-dimensional space. 

The Kirchhoff plate theory with nonlinear 

strain-displacement relationships was used to cal- 

culate elastic forces as well as differential geome- 

try of surfaces in 3D space to calculate mid- 

plane deformations and transverse curvatures 

and twist. 

The proposed element is able to correctly re- 

present large overall motion because its shape 

functions contain a full set of rigid-body modes. 

It also can represent large deformation due to 

nonlinear strain-displacement relationships used 

in this investigation. 

Let us consider a plate element of size a X b x 

h (lengthXwidthXthickness).  The plate is re- 

presented by its middle surface only, as shown in 

Fig. 14. 

"r2t b P1 / 

D2 / 

/ /  

Fig. 14 Beam-beam model of a plate 
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The surface of the plate is parameterized by 

values p~ and Pz. Let O~ be the origin of the 

configuration space of the element. Let us ima- 

gine a coordinate curve parallel to axis p~(px- 
beam) to define the position r(Pl ,  Pc) of an 
arbitrary point of the plate relative to the origin 

O of the inertial reference frame. Extension of  

the idea of absolute nodal coordinate formula- 

tion for 3D beams gives; 

p l  

r(p~, /~)=[gJ  32I 331 3,1] r~ (9) 
P2 
"t'z 

where 3~=sk(pa, l) are Hermite shape functions 

for the pwbeam : 

s~(P, l)=sa(l--p, I )=1 - -3~e2+25  a, 

sz(P, l)=--s4(l--p, l)=l(~--2~ez+~a), ~ = p .  

sa(P, l)=35z--253, 
s~(p, l)= l(~ea_~e~) 

I is the 3 × 3  identity matrix, Ok and rk are 

absolute nodal coordinates of the p~-beam (glob- 

al displacements and slopes of  the end points). 

6.2 Mass matrix and equations of motion of 
a plate 

To derive dynamic equations of a plate ele- 
ment, we employ Lagrange equations in a matrix 

representation 

d {3T'~T_(OT~r+{ou~r=[ OW~ r 
dt \ 3e / \ ~ - /  \ ~ e - /  \ ~e J 

kinetic energy T=Ifo~foblZfrfdp, dpz, in- with 

ternal strain energy U and virtual work S W =  

--''J00"f0 her  rlzgdp,dp2 of external gravity forces /_tg. 

Taking into account relation leads to the equa- 
tions of motion 

M6"+Q~=Q ~ (lO) 

/0T with the constant mass matrix M = /18 r 

Sdp~d~, the surface mass density /1 of the plate, 
the elastic Qe=c~U/<?e and gravity Q e = ~ r , u g  

generalized forces, ~=£a£bSdpld¢~.---- Note, that 

centrifugal and Coriolis inertia forces are absent. 

This is usual for the absolute nodal coordinate 

formulation (Mikkola, 2001). 

An explicit expression for the mass matrix can 

be obtained in a block matrix form using defini- 

tion of the shape function as 

Mn M12 Mxa M,~] 
M= Mza / 

/M~l Ma2 Mza / 
In41 M4z M4a M44] 

[Mi, n Mi,12 Mijl3 Mi,14] 
M ]Mi:m Mi.,~2 Mi.,=a Mo24] 

U = J M  Mo~4/ O'ai M032 no~3 
LMij41 Mi,42 Mo4a M~j44J 

where each block Mij is also a block matrix with 

block-elements 

Mijm=MumI 

Mi,k,= , ff2, k3Z,dP 
=lz  sis, 1 SkSt : /zSiySkl.  

Matrices with hats are similar to mass matrices for 

beam. 

" / [ 156 sym] 
a / 2 2 a  4a 2 

' :  420- / 54 13a 156 

1_--13a - -3a  2 - -22a  4aZJ ~j 

Matrix ~ is easy to calculate explicitly, too : 

~ =  [ g n I ,  ~azI, ~'~aI, ~14I; " " ;  " " :  

S4~I, ~42I, g,  aI, ~44I] 

f f  s,,dP= f f  3,s ,dP 

the symbols with hats being well-known from the 

beam elements theory. All  terms in equation (10) 

are obtained except elastic forces Qe  which are 

the most difficult to calculate due to complexity 

of the strain energy. 

Following the Kirchhoff theory, the strain en- 

ergy of an orthotropic plate can be decompos- 

ed into longitudinal and shear deformations in 
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the m i d - p l a n e ,  and  a t ransverse  one  due to its 

bend ing  and twis t :  

U = U ~ + U" 

m i d - p l a n e  of  the plate 

1 r ~s =~-(r~ rj - &~) (~3) 

6 2 2 2 u 
U = , . z f f ( ~ D i j ~ +  D~en~22)dP (11) 

n P i=lj= I / 

2 2 
'3 11 U'=I2 Alef( { N,~Dis~i~ +-D~KnK22 ) (12) 

The  energy conta ins ,  firstly, elastic pa ramete r s  o f  

the mater ia l  of  the p l a t e :  f lexural  r igidit ies Dn. 
Da2 and  twist  stiffness Dla : 

Enh  s E=h s 
Dn = D22 = 

12 ( 1 - ~'12 vzl) ' 12( 1 - u12val) 

Dl2 = D2L = EI2hS 
6 

and also an add i t iona l  stiffness coefficient D ~  = 

0 . 5 ( D n v 2 1 + D ~ u l 2 ) .  The  latter express ions  de- 

pend on Y o u n g  modul i  E n ,  Em and  a shear  

modu lus  Etz as well as on  Po isson  rat ios u~2 

and  ~2,. The  ra t ios  satisfy the fo l lowing  condi-  

t ion : 

E n  ~ l  = E =  u~2 

Secondly,  the s t ra in  energy con ta ins  geometr ica l  

pa ramete r s  o f  the p l a t e :  l ong i tud ina l  deforma-  

t ions  cn,  ¢~ and  shear  de fo rma t ions  e~.=¢z~ as 

well as t ransverse  curva tures  xn, &a and a twist  

KI2  = K2I ,  

In case of  smal l  deflections,  the deformed  sur- 

face of  the plate  is defined by three scalar  func- 

t ions  : by m i d - p l a n e  d i sp lacements  tt (x, y) ,  v (x, 

y) and  by a t ransverse  d i sp lacement  w(x ,  y) .  
In that  case, the  men t ioned  de fo rma t ions  and 

curva tures  are ca lcula ted as fol lows : 

Ou Ou 1 / 8u av 

o%, o~w 3 %  

In our  case when  the plate is or iented m an  

a rb i t ra ry  way and  specified in a pa ramete r ized  

form r = r ( p ~ ,  /~) ,  we shou ld  use the re la t ion-  

ships from different ia l  geometry  of  surfaces. T h e n  

we ob ta in  expressions for de fo rma t ions  in the 

with a Kronecker  symbol  &s as well as for t rans-  

verse curva tures  and  twist 

/cij : r   n/]l n II (14) 

with the no rma l  vector n = r 2 × r 2 .  Othe r  nota-  

t ions  are the der ivat ives  

Or _ i o ~ r  _ ~.i 

r = u * + u :  

P l  

1~ + 
0 

ul (,Pl, ~ )  

l / & ~  , 3us , ~ 3 u k  3uk 

o~u3 8u3 2 0us 2)-~ 

More  detai l  ca lcu la t ion  process of  long i tud ina l  

elastic forces and  t ransverse  elastic forces are 

expla ined  in reference (Yoo  et al., 2003).  

7 .  C o m p a r i s o n  o f  S i m u l a t i o n s  a n d  

E x p e r i m e n t s  o f  a T h i n  P l a t e  

Figure  15 presents  the results for the 400 mm × 

2 0 4 m m × 0 . 4 m m  plate wi th  4 0 0 g  of  a t tached 

mass. The  s imula t ion  results and  exper imenta l  

results are compared  in Fig. 15. As s h o w n  in 

Fig. 15, x and  z pos i t ions  are in a good  agree- 

ment.  After  a few seconds,  there are some t ime 

lags between two results. The  reason,  the au thors  

suppose,  may came from the values of  Young ' s  

modu lus  and  d a m p i n g  rat io but  the differences 

are not  too  big. 

The  y pos i t ion  shows  some devia t ions ,  but  it is 

not  a big deal if one  verifies tha t  the m a x i m u m  

magn i tude  o f  the y - d i r e c t i o n a l  def lect ion is very 

small.  

Thus ,  the large def lect ion s imula t ion  of  a beam 

with A N C F  fo rmula t ion  and  the exper imenta l  

results are also in a good agreement .  
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Comparison of experiments and simulation 
(plate, tip mass 400 g) 

8. Conclusions 

In this paper, experiments and simulations of a 

2D cantilever beam and a thin plate with an 

attached end-point  weight are compared. To in- 

put a precise data for the material damping and 

air resistant damping in the simulation, we carri- 

ed out several experiments. 

Rayleigh's proportional damping was applied 

to account for resistance forces in large oscilla- 

tion cases. It was found that when such resistance 

forces are small, it is possible to ignore the 

stiffness-proportional part of the damping forces 

and focus exclusively on the mass-proportional 

part. 

To the best of the authors' knowledge, this is 

the first paper to compare the results of simu- 

lations and experiments in this context. Thus we 

have obtained some new results during this in- 

vestigation. 

We used the ANCF (absolute nodal coordinate 

formulation) for modeling of 2D beam and sug- 

gested a vector-algebra notation for the com- 

ponents of the vector of the nodal coordinates. 

To simulate the plate ogcillation, we developed a 

new 48 dof plate element from beam x beam ele- 

ment. The comparison of simulation to experi- 

ment with a thin plate oscillation also showed a 

nice agreement. 
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